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SUMMARY

This report describes the development of a computerized pilot decision-

making simulator/trainer known as MIDIS, and its utilization as a research

tool in the validation of an information-processing model of pilot decision

making. Efforts in this project followed two parallel but interacting tracks:

e14-,velop[ment of decision scenarios for the MIDIS program, following the

sequence of a realistic IFR flight, and compilacion of a cognitive test

battery, based on an information processing model of decision making, and

designed to assess individual differences in those cognitive attributes

determined to be important in effective decision making.

Subjects consisted of thirty eighL in~strument rated pilots subdivided

into two groups on the basis of reported hours of flight experience. The

experiment consisted of four parts: administration of the cognitive test

battery, pre-flight planning, a practice flight, and the actual MIDIS ruln

Subjects were scored as to the optimality and latency of their choices, and

their rated confidence.

The results indicated that low and high experienced pilots did not differ

fron each other in terms of their judgment performance, but that high

experienced pilots expressed slightly greater confidence in their decisions

Both Proups became equally overconfident on their responses to more difficult

decision problems. The two groups however did differ in terms of what problem

variables degraded decision performance, and what individual abilities

affected that performance. In particular, novice decision performance was

partially predicted by inforitation processing tests related to spatial

abilities, working memory capacity, mathematical ability and by tests of

d-Lci,•rative knowledge. However, these tests had little predictive abilities;

for the more experienced pilots. The implications for future research that

fc-cuses on capturing this source of prediction of experienced pilot judgmený

are discussed. BEST AVAILABLE COPY
iii
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1. INTRODUCTION

1.1 Overview

Engineering Psychology has provided a number of useful and sophisticated

models of human performance in certain aviation-relevant areas. Most

prominent among these concerns is the extensive work that has been done on

modeling manual control. The programmatic efforts to develop the quasi-linear

Crossover Model undertaken by McRuer, Jex, and their colleagues (McRuer, 1980;

McRuer & Jex, 1967), and the efforts of Levison (1982) to develop the Optimal

Control Model have both achieved a great deal of success in predicting

quantitatively how human manual control performance can be modeled, will

degrade under stress, and will improve with training. While it is anticipated

that manual control will continue to be a critical component in aviation, with

increasing aircraft sophistication the pilot is now called upon to become more

and more a systems manager and executive decision maker. Certainly a pilot's

judgment and decision making abilities are critical to air safety. Analysis

of FAA aircraft reports by Jensen and Benel (1977) suggested that errors in

pilot judgment accounted for over 50% of pilot fatalities during the period

from 1970-74. Yet despite this importance, pilot decision making has received

only a minimum degree of research interest (for exceptions see Buch & de

Bagheera, 1985; Buch & Diehl, 1984; Jensen, 1981; Lester, Diehl, & Buch,

1985). Nor has pilot judgment benefited from the sophisticated modeling

approaches characteristic of the manual control field. This neglect is even

more surprising in light of the growing amount of solid theory-based research

in the psychology of decision and choice (see Einhorn & Hogarth, 1981;

Kahneman, Slovic, & Tversky, 1982, Pitz & Sachs, 1984; for recent reviews),

and the limited understanding of decision making on the flight deck (Stone,

Babcock, & Edmunds, 1985).
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The first section of this report will focus upon conclusions regarding

human strengths and limitations in decision making that have been drawn from

general research. Where possible these factors will be illustrated in the

framework of aviation-related tasks, but for the most part their actual

investigation in an aviation context has not been carried out. The second

section describes a pilot decision making simulation system known as MIDIS

used for validating an information processing model of pilot judgment, and a

cognitive test battery developed for the purposes of testing individual

differences in that model. The third section describes an experiment in which

the relation between the model, the battery, and the simulation is validated.

1.2 Pilot Decision Making

There are three general characteristics that define the decision-making

paradigm. First, the pilot must evaluate several sources of information in

assessing the situation, or understanding the current state of the "world."

This assessment forms the basis for choosing an appropriate action. Second,

the information the pilot deals with is probabilistic. The cues used for

situation assessment may be unreliable (e.g., a weather forecast predicts a

20% chance of thunderstorms), and the projected consequences of an action into

the future are uncertain. This probabilistic element means that the right

decision can often produce an unfortunate outcome ("bad luck") and the wrong

decision can often "luck out." Third, the elements of value and cost underlie

most decisions. For example, the pilot may have to balance the benefit of

continuing a flight through bad weather and satisfying the passengers' need to

reach their destination on time, against the potential greater cost of an

accident.

Figure 1 presents a general model of human decision making that

highlights the information processing components which are relevant to

decision-making. To the left of the figure, environmental cues are sampled to

2
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Figure 1. An information processing model of pilot decision making.
Biases and heuristics are surrounded by a square and coded at the bottom
of the figure.
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obtain a "situation assessment" or diagnosis of the state-of-the-world that

calls for a decision. An accurate assessment often requires perception of a

large number of cues--radar pictures, weather forecasts, visual topographic

features, fuel consumption, engine status, airport capabilities and so forth.

These cues in turn must be interpreted against a knowledge base in long-term

memory to accurately construct a mental model or diagnosis of the situation.

Possible alternative hypotheses that describe the situation are generated from

long term-memory, held in working memory, and compared against the cues. As

* we shall see, this construction process is hampered both by limits of

attention (are relevant cues processed?), and by biases in long term memory.

Assuming that the assessed situation is identified as a problem that

requires some action, the pilot must then generate plausible alternative

courses of action to take. For example, the pilot may ask, "Do I continue my

approach, fly around while seeking more information, or turn back to an

alternate airIort?" Each proposed course of action may have a different

anticipated set of possible outcomes, depending upon the diagnosed state-of-

the-world. Furthermore, all of these outcomes will have potential values

associated with them (or costs, which may be defintd as negative values). The

expected value of an outcome is its true value multiplied by the probability

that it might occur. When values cannot be expressed in monetary terms they

are called utilities. The pilot's choice or decision should be that which

produces the most positive, or least negative expected utility. As indicated

in the figure, this critical choice point involves the process of risk

assessment--the subjective evaluation of the probability of different

outcomes--and .he assessment of the utilities of these outcomes, as this

information is retrieved from long term memory.

Finally, the figure indicates that at any stage these operations may

trigger the decision to seek more information in order to better assess the

4



situation and/or evaluate the consequences of an action. In the following

pages, we shall outline some of the behavioral findings with regard to human

strengths and limitations in this interactive process. The squared letters

within the figure indicate particular sources of bias or "heuristics" that

will be identified and discussed as the elements of the decision process aie

described in more detail below.

1.2.1 Situation assessment. In setting the stage for our discussion of

cue perception and situation assessment, it is appropriate to consider two

different aviation scenarios. In the first, a pilot flying IFR has become

completely disoriented. Not only are glimpses of the now unfamiliar terrain

below intermittent and cloud obscured, but the navigational information itself

may be unreliable because of a suspected instrument malfunction. The

situation to be assessed is "Where am I?" In the second scenario, the pilot

senses, through a series of warning indicators and gauge readings, that one of

the engines may be malfunctioning, but the nature of the malfunction iL not an

obvious one with which he is familiar. The situation to be assessed here is

the diagnosis of what is wrong with the engine.

In situation assessments such as these, psychologists have found that

problem solvers and trouble shooters often engage in "heuristics" or mental

rules of thumb that are intended to reach a diagnosis without expending too

much mental effort (Kahneman, Slovic, & Tversky, 1982; Rasmussen, 1981).

While such heuriscics often work adequately, the fact that they are shortcuts

may prevent the decision-maker from obtaining the most accurate information.

They may, therefore, sometimes lead the decision-maker to a false

understanding. These sources of bias and error in situation assessment will

be the focus of the following discussion.

5



1.2.1.1 Cue seeking. Searching the environment for critical cues in thp

first stage of situation assessment is limited by characteristics of hxultan

attention. It is apparent, for example, that decision makers do not

necessarily process all of the information that is available to them (Wickens,

1984), particularly under time stress (Wright, 1974). Given that stress often

causes a "tunneling of attention" when monitoring multi-element displays

(Hockey, 1970), it is reasonable to assume that this tunneling would have the

same restricting influence on the processing of multiple cues to assess the

situation. For example, in attempting to diagnose a faulty engine, a pilot

may focus on only a small number of physically salient symptoms, ignoring

critical cues that might provide even more diagnostic information concerning

the nature of the fault (such perceptual tunneling has been considered

responsible, in part, for the disaster of Three Mile Island). This bias

toward salience, at the expense of information content is indicated by the S

in Figure 1.

Research has also found that the decision maker's cue seeking behavior is

heavily guided by the hypothesis that may already have been tentatively

chosen. This tendency, known as the confirmation bias (! in Figure 1),

describes the bias to seek (and therefore find) those sources of information

that confirm what we already believe to be true (Mynatt, Doherty, & Tweney,

1977; Wason & Johnson-Laird, 1972). Thus, the disoriented pilot who is trying

to establish his location over the ground may first posit that he is in a

certain location and then focus attention on ground features that are

consistent with that location, tihile ignoring (or discounting) those that are

inconsistent. As Wason and Johnson-Laird have noted, the best way to

establish that a hypothesis is true is to seek information which, if found,

will falsify the hypothesis rather than confirm it.

6



While, in general, people process only a limited numbez of sources of

independent information when testing or confirming a hypothesis, theme

limitations are removed (or at lnast are greatly lessened) to the extent that

the information sources are corrlJateJ. Thus, the skilled pilot can rapidly

diagnose the current state of an aircraft from the six crucial instrument

readings becaune of the typical pattern of correlation that is observed

between these readings. For example, a positive rate-of-climb is correlated

with an increase in altimeter reading; a change in attitude predicts a change

in heading and so forth. In the same way, extensive familiarity with the

patterns of symptoms produced by particular aircraft malfunctions will allow

the pilot to interpret rapidly the potentially large number of cues indicating

their status. For example, the failure of the suction pump will cause a

failure of gyro instruments (altitude and heading indicator), resulting in a

correlated change in these two instrument readings.

One general characteristic of cue seeking and information integration is

its apparent dependence upon facilities of selective and divided attention,

particularly to the visual environment (Horay, 1986). This will represent an

important component of our experimental approach.

1.2.1.2 Hypothesis formulation and testing. People typically try to

understand a situation by matching in working memory the pattern of cues seen

in the environment with a mental representation of the typical or

raDresentative pattern for a particular situation as recalled from long-term

memory (a in Figure 1). We may think of this memorized pattern as a

hypothesis of the proposed state. If the hypothesis matches the data, then

the situation is diagnosed (Tversky & Kahneman, 1974). A limitation of this

heuristic results from the fact that a particular pattern of cues may not be a

perfectly diagnostic indicator of the true state of the world. For example,

to the lost pilot, the 600 intersection of a freeway with a road below may be

7



consistent with several different ground locations, just as a pattern of low

oil pressure and high engine temperature could ba symptomatic of any number of

different engine failures.

To cnsure an accurate diagnosis, the decision-maker should first think of

a reasonable number of possible hypotheses, in order to make sure that as many

situations are covered as possible. An extensive program of research by

Gettys and his colleagues (summarized in Gettys, 1983) suggests however that

faced with problem-solving situations, people generate only a small fraction

of possible hypotheses (relative to the number of plausible ones) even as they

remain overly confident that their list is exhaustive.

In the second place, those hypotheses that people do generate should be

the most probable or likely ones. For example, suppose a pilot has formed two

alternative hypotheses concerning the diagnosis of an electronic system

failure, one of which occurs ten times more frequently than the other. In

such a case, the pilot's initial hypothesis concerning the cause of the

malfunction should indicate the more frequently occurring failure. Yet,

people do not accurately use the probability or "base rate" frequency

information to guide their choice in this way (Kahneman, Slovic, & Tversky,

1982). Instead, when generating the few hypotheses from memory, they use what

is described as the aviaiiy heuristic (Tversky & Kahneman, 1974). A

hypothesis is considered most likely if it is most available in memory.

However, the most available hypothesis in memory may not be the most probable,

* but rather the one that was most recently experienced, or the simplest one,

* since simple hypotheses are easier to remember than complex ones (Fontenella,

I 1983; Tversky & Kahneman, 1974).

There is a second sense in which people fail to use probability

information appropriately in diagnosis, and this relates to cue reliability.

8



Clearly some cues are quite reliable: the visual sighting of a disti.ict

ground landmark, or the smell of smoke in the cockpit, For others the

reliability may be somewhat less: instrument readings, or views of the same

landmarks through the haze. Still other cues may have a reliability that is

at best marginal--a message spoken by another pilot heard through static, an

instrument reading that is notoriously unstable, or the sense of verti-al.

obtained through vescibular cues. Yet, when integrating a number of

information sources that vary in their reliability, people follow what is

sometimes referred to as the "as if" heuristic (:All in Figure 1, Wickens,

1984). In the extreme, this amounts to treating all information sources as if

they were of equal reliability or, to a lesser degree, failing to "devalue"

those information sources of lower reliability to an extent that is optimal

(Johnson, Cavanagh, Spooner, & Samet, 1973; Kahneman & Tversky, 1973; Schum,

1975).

Instead of using cue reliability as a basis for choosing their hypothesis

people more often focus attention most heavily on those cues that are

physically salient (loud, bright, recent, centrally visible and easy to

interpret; Wallsten & Barton, 1982), and those that are likely to confirm the

hypothesis that was already tentatively formed (. and Q respectively in Figure

1). If those cues, by chance or by design, also happen to be quite reliable,

then the assessment of the situation will likewise be accurate, but if not,

and their indicated diagnosis is wrong, then even the best-intended decision

of what action to take may lead to disaster because it will be based on a

faulty assessment of the world.'

An important characteristic of all human information processing dealing

with hypothesis entertainment and selection is the heavy dependence on the

mental "workbench" of working memory (Baddeley & Hitch, 1974; Wickens, 1984).

9



The assessment and prediction of working memory strength represents another

important component of our experimental validation.

1.2.2 Decision formulation. Once an assessment of the situation is

C,! made, a decision must then follow as to what action to take. Of course, the

decision may simply involve the choice to seek still more information, as

indicated by the top loop in Figure 1. In all cases, the decision maker

*": should choose the course of action with the most favorable expected outcome--

the highest expected utility. Sometimes this course of action is simple, if

the situation is diagnosed with certainty (I'm sure that my fuel is about

gone), and there is no question about the best action (land in the nearest

field below rather than going further). However, at other times the choice of

possible actions is far less clear cut. This may either be because the

* situation assessment leaves some uncertainty to be resolved in the pilot's

* mind (There is a 80% chance that my fuel is gone, but because I haven't flown

very far since I refueled, there is a 20% chance that my fuel gauge may be in

error), or because the consequence of one's choice of actions cannot be

predicated with certainty (If I try an emergency landing here, I believe my

chances of survival are high but I am not certain).

Formally, this state of affairs may be represented in terms of the

decision tree shown in Figure 2. In this example, two states of the world,

with different subjective probabilities are shown across the top and two

, potential courses of action are shown down the sides. (Of course, in a real

world decision problem, there may be a greater number of both states of the

N world and of potential actions.) The decision-maker should optimally assign

probabilities to each state of the world as we have seen above. Each action

then, when taken in the presence of one or the other states of the world, can

generate one or more potential outcomes. In the case of the example here, the

possible outcomes of a decision to land might be a safe landing in the nearby

10



State of the World (S.O.W.)

Fuel Gone (p = .80) Fuel Available (p .20)

iII
Continue 01: Disastrous Landing 03: Reach Airport

to (U = -100, p = .60) I (U 0, p = 1.0) 1 .48X(-100) +
Airport (p* = .80 x .60 = .48) I (p* = 1x .2 .20) .32X(-10) +

IfI .2X(o) a
02: Safe Landing I -48 - 3.2 + 0
(U = -l0, p = .40) i I -51.2

CHOICE (p* = .4 x .8 = .32) I
OF I
ACTION

04: Disastrous Landing
(U = -80; p z .20)

Emergency (p* = .20) .2X(-80) +
Landing in .8X(-10)

Field 05: Safe Landing -16 - 8'= -24
Below (U = -10, p = .80)

(p* = .80)

p = Absolute probability of S.O.W.
p = Absolute probability or outcome.
p* =Contingent probability of outcome given the state of the world.

Figure 2. A decision tree representation of pilot decision making.
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field with the unpleasant aspects of getting it out again, or a disastrous

landing in the same place; a decision to continue might result in a safe

flight to the final destination, or the potential disaster of running out of

fuel, short of the field with a less feasible landing place. Each of these

outcomes has a utility, a positive or negative consequence to the decision

"" maker that can be assigned some relative value, and a prbbiliJ.ty, or expected

frequency of occurrence. Together, the utility and the probability serve to

define the riusk, and the human should optimally choose that action with the

"lowest expected risk. Formally, the expected risk of an action is computed as

the expected risk of each outcome--its utility timer, its probability--summed

across actions. These calculations are shown to the right of Figure 2, in

which it is clear that the emergency landing has the lowest expected risk, and

hence is the decision that should be made, Here again, human performance has

been found to be adversely affected by certain biases and limitations.

To begin with, even the basic rows and columns in the decision matrix may

not be set up optimally. As we have noted, the diagnosis estimating the

possibility of the possible system states may be in error. Because of the

confirmation bias, the diagnosis will probably show a far greater confidence

or estimated probability of the most likely hypothesis than is warranted.

Secondly, Gettys (1983) has found that, as in hy-pothesis generation, people

generate only a small fraction of the feasible problem-solving actions that

may be appropriate in a given situation.

Even assuming that an adequate matrix is set up, arriving at an optimal

decision still requires that thb risks (probability x value) of the different

outcomes be accurately assessed. Here again, experiments show that people are

not skilled at assessing the probability of different outcomes and their

resulting risks (Fischoff, 1977; Kahneman, Slovic, & Tversky, 1982; Slovic,

1984), although it is not entirely clear what kind of biases these problems

12



will demonstrate. On the one hand, people clearly overestimate the frequency

of very rare positive events (Pitz, 1965). This bias explains why gambling

and lotteries are pursued--because the low probability payoffs are perceived

as occurring more frequently than they do. On the other hand, peoples'

estimates of the frequency of different kinds of unpleasant or negative events

appear to be influenced very much by the ayaialhil.i. heuristic described

above (Tversky & Kahrn, 1974). Highly available events, because they are

salient and well publicized are overestimated (fatal aircraft accidents fall

into this category), while less salient ones are greatly underestimated (near

misses, or non-fatal accidents; Slovic, 1984). Collectively, the effect of

these biases on the decision matrix 6uch as that shown in Figure 2 cannot be

entirely predicted.

To this analysis, two further important findings should be added. The

first is based on a general theory of choice, put forward by Tversky and

Kahneman (1981) which describes the influence of prnblem, framing. While the

entire theory is relevant to the concept of risky decision-making, its most

critical aspect for this discussion is the assertion that the choice between

two actions, one a risk and the other a 'sure thing," will depend very much

upon whether the problem is framed as a chon3e between gal.ns or between

losses. Of course, in our critical analysis of pilot decision-making, the

choice is often between losses. Here Tversky and Kahneman observe that people

are biased to choose the risky loss rather than the certain loss even when the

expected loss resulting from the former is greater. For example, consider the

pilot who must choose between turning back in the face of potentially bad

weather (with the certainty of missing a critical appointment and

disappointing his passengers), and continuing on (with a chance of getting

through safely and on time, but also a small chance of suffering a major

13
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disaster). The choice is clearly one between negatives: a sure loss versus

an uncertain probability of disaster, and Tversky and Kahneman have shown that

people have a bias to favor the risky choice. This risk-seeking tendency is

reversed however when the choice is framed as one between gains, and here the

"sure thing" alternative is favored. In the previous example, we might

suppose that if tho pilot could frame the same decision as one between

ensuring that lives are saved (the option to turn back) and probably keeping

&n appointment (the option of going ahead), the bias would swing toward the

"sure thing" turn-back option.

The second bias that is relevant in choosing actions is a well-documented

tendency toward overconfidence in forecasting. In a general sense, people

ovnrestimate the likelihood that their predictions of the future will be

correct. Here again, one may account for the "can do," or "it won't happen to

me" bias of a pilot, choosing to undertake a risky option. Studied repeatedly

by Fischoff (1977), this bias is accounted for by peoples' inherent dislike of

* uncertainty.

A general conclusion emerging from the previous section is the strong

* dependence of good judgment on the accurate, calibrated assessment of risk and

- probability. Hence, another major component of the experimental approach will

focus on risk and probability assessment.

The previous section has focused on generic limitations that would be

* applicable across a wide variety of decision tasks. In addition, the flight

*" environment highlights two specific characteristics that must be present for

effective decisions: well developed spatial abilities, and a strong knowledge

*. base of facts and information. Both of these will enter into our evaluation

and prediction of pilot judgment.
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2. METHODOLOGICAL APPROACH: THE MIDIS TASK

2.1 Logic of the ApDroach

Given the general background reviewed above, we propose to validate the

model presented in Figure I as a tool for examining pilot judgment using the

following logic. If effective pilot judgment in fact depends upon avoiding

the biases and pitfalls encountered in Figure 1, then those individuals who

possess processing characteristics that minimize those biases and limitations

should make good decisions. Correspondingly, those individuals who are

deficient in relevant attributes should perform poorly. But different

decisions may place greater or lesser demands on different attributes. The

decision to abort a takeoff following engine failure, for example, may involve

processing just two cues of information, one's airspeed and position on the

runway, but will require processing those cues in a rapid manner. But

diagnosing an instrument failure may require integration of a large number of

cues with less time pressure, but heavy reliance on working memory.

Hence each decision can be characterized by a "profile" of demanded

attributes as shown in Figure 3; those decisions that have high demands on an

attribute that is relevant to decision making should be performed poorly.

Finally, each pilot will generate a corresponding "profile" of available

attributes. We hypothesize that to the extent that a pilot profile of

attribute strength matches (or exceeds) the decision profile, the decision

will be fast and accurate. To the extent that a mismatch occurs, performance

will be less optimal. An incorrect decision may be reached, or the correct

decision may be made only after a long time. Hence, an interaction between

pilot abilities and decision type is predicted. Given this characterization

of pilot abilities and demand attributes, a second thrust of the study

examines how decision performance differs as a level of pilot experience.

Does performance simply improve? Or does it change in a qualitative fashion?
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DECISION

PILOT

NEEDS GOOD

HAS _ _

M R A L

Memory Risk Attn Logic

KNOWLEDGE
NEEDS POOR

M R A L

Figure 3. Profile of pilot's cognitive attributes, along with two
representative scenario profiles. To the extent that the demands of
the scenario match the pilot's profile, good performance is predicted.
To the extent that a mismatch occurs, poorer performance is expected.
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Our approach integrates three sources of data. (1) Decision performance

data are collected using the MIDIS flight decision simulator incorporated on

an IBM PC/AT, which will be described in section 2.2. (2) A test battery

provides a psychological "profile" of cognitive abilities for each subject

pilot described in section 2.3. (3) The decision situations used in MIDIS are

content analyzed in terms of our hypotheses about the psychological demands

made by each situation or "scenario." In the following pages, we shall first

discuss the MIDIS system, then the cognitive test battery, and finally the

analytical approach used to connect the two.

2.2 The MIDIS Decision Simulator

The project that we describe has followed two parallel but interacting

tracks, as shown in Figure 4. On the left of the track, a team of flight

instructors collaborating closely with cognitive psychologists have designed a

series of flight decision problems or "scenarios" that incorporate the

heterogeneous set of information processing demands that may be imposed upon

DECISION MODEL

Flight Instructors Cognitive Psychologists

Decision Scenarios _Cogni tive Test Battery
Development Attributes Development

MIDIS Program Co nitive Battery

*Data Collec o
Instrument Rated Pilots

(1) Contrasting Experts and Novices
(2) Prediction of Good Decision Makers

(3) Matching of Attribute Profiles

Figure 4. The MIDIS Project.
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the pilot. Generation of these scenarios has depended both upon an

understanding of the model in Figure 1, and years of expertise in instrument

flying. Certain decision problems will require a breadth of attention, others

will require that hypotheses be revised in light of new data, and still others

may require an accurate assessment of risk. While incorporating these

attributes, an effort has also been made to present the series of decision-

situations as discrete events in a single coherently flowing flight from an

origin to a destination. To enhance experimental valitlty, MIDIS has a number

of simulator-like qualities (it provides a continuous "engine" sound cue, for

example, and permits route deviations or reversals).

The MIDIS system itself consists of two programs, SETSCENE 2 and MIDIS 2,

written in PASCAL and running on the IBM AT. The first program, SETSCENE, is

an editor that facilitates the preparation of "flights" by the

experimenter/flight-instructor. SETSCENE provides input to MIDIS, which

controls a text and instrument panel display. The general structure of the

MIDIS system places it in a class of programs referred to as "Graph

Traversers" (Doran & Mitchie, 1966). Graph traversers are applicable to

situations where a number of states are connected by a set of transformations

or "operators." This can be represented as a branching tree-structure graph

in which the nodes represent the states and the operators linking them are

transitional probabilities. The states in MIDIS take the form of descriptions

of realistic in-flight situations referred to as "scenarios." These are

- similar in concept to the SET (Situational Emergency Training) scenarios

developed at Luke AFB for F15 pilot training, i.e., simulations of real

situations requiring decision-making skills. Unlike SET, however, a MIDIS

situation may involve any potential in-flight situation, emergency or

otherwise. Each scenario requires that a decision be made among several

18



alternatives presented. The decision influences the occurrence of subsequent

scenarios since it selects the transitional probabilities that will operate.

Two considerations determined the scenario sequencing structure used in

SETSCENE. First, there is the problem of devising a scenario structure that

gives the appearance of being unbounded to the user while in fact having a

constrained formal structure. The second consideration concerns the need for

this structure to represent the pattern of deteriorating circumstances that

often characterizes aircraft mishaps. These misfortunes do not usually occur

as a result of one poor decision or one technical malfunction, but rather as a

result of several concatenated events opening successive "gates" to an

accident. Figure 5 represents a structure designed to keep the progress of

the simulated flight "on track," while at each stage allowing digressions into

successively less optimal scenarios. (For clarity the figure shows just three

branches from any one scenario. In fact there are ten..) This structure is

built around "core" scenarios that represent situations at points along a

cross-country flight-track. Core scenarios are to some extent independent of

each other, for although they must make chronological sense they do not form a

tight causal chain. Other scenarios, generally less favorable to the success

of the flight (here labeled -'side" scenarios for convenience) become more

probable as decisions become less optimal. The further down the chain of side

scenarios the subject proceeds, the less probable is his return to a core

scenario.

2.2.1 STSCENE 2. SETSCENE permits access to up to ten scenarios from

any starting point scenario and'up to six decision options per scenario.

Along with each scenario a comprehensive range of instrument panel readings is

also stored plus rate of change information. These data are accessed by MIDIS

2 as a subject progresses through a "flight." A realistic time limit is

incorporated with each set of decision options in SETSCENE. This is because
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some problems are very circumscribed in the amount of time that can be allowed

for the decision process (engine failure, for example), whereas others are

more open-ended (e.g., radio failure). If no decision is made within the time

allowed, SETSCENE ensurer that MIDIS defaults to the situation most likely to

occur should the pilot fail to intervene.

SETSCENE incorporates two further sets of algorithms: one set uses

Boolean logic to permit any decision to have a delayed effect upon any

subsequent scenario as desired. Another set automatically counts syllables in

scenarios and decision options. This was developed to provide accurate counts

on both normal tc•ct and radiocommunication language, permitting MIDIS to

factor out reading speed variance in problem study and decision selection

times.

In addition to its "MIDIS driving" functions, SETSCENE also performs a

number of important "housekeetping" operations. As discussed earlier, SETSCENE

2 has a structure capable of modeling event sequences with considerable

realism and flexibility. How far this potential is realized, however, still

depends heavily upon the quality of the "flight information" in the database.

An "item bank: of scenarios has been prepared by flight instructors on the

project team, and this database is continually being expanded. The program

has been designed to assist in keeping track of the scenarios and options in

the database. This facilitates the construction of different flights as well

as the post-hoc analysis of those flights. Therefore each scenario may be

identified according to a set of bibliographic descriptors (such as "cruise,"

"approach," "weather problem," "system malfunction," etc.), and cross-indexed

searches can be carried out on these descriptors.

We also perform a content analysis of the situations themselves in terms

of their psychological attributes. As discussed in more detail below, each

situation is rated on each of 11 cognitive attributes. These ratings indicate
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our hypotheses concerning the extent to which reaching an optimum solution on

the problem depends upon the strength of the attribute. SETSCENE stores these

ratingr, and its search and retrieval capability permits scenarios to be

identified or selected on the basis of similar problem structure. This is

important to our componential study of decision-making detailed below,

2.2.2 MIDIS 2. MIDIS has a full, high-fidelity instrument panel based

on a Beech Sport 180, the type of aircraft used for training at the University

of Illinois Institute of Aviation. This display, implemented via the HALO

graphics package and 16 color Enhanced Graphics Adaptor, represents a full IFR

"blind flying" panel with operating attitude, navigational and engine

instruments. MIDIS accesses SETSCENE files to change the readings on the

instrument panel throughout the course of the "flight" in synchrony with the

prevailing scenario. MIDIS does not attempt to simulate the flight dynamics

of an aircraft from control inputs - the province of flight simulators - but

it does provide for a flight-relevant concurrent psychomotor task, not used in

the presant experiment. Figure 6 gives a screen print of a MIDIS 2 display.

Seven performance variables are monitored, most of them unobtrusively.

Four of these relate to response selection: decision choice, optimality,

decision time (latency), and decision confidence. The last three of these are

combined to form a decision quality hierarchy, with accurate, fast, confident

decisions at the top and inaccurate, fast and confident decisions at the

bottom. Slow responses made with low confidence have intermediate scores,

with correct choices obviously receiving higher scores than incorrect ones.

Other variables monitored are problem detection, problem study time, and

mean reading speed (text inspection time). A scenario can be defined by

either the particular normal or abnormal configuration of the instrument panel

alone, or by the instrument panel together with a text description of
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Figure 6. A representative MIDIS display panel.
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particular circumstances. Where text accompanies the panel, the instruments

are stable - showing no rate of change. The scenario represents a situation

in which the aircraft is in steady flight.

The scenario may represent a problem or it may not. A problem scenario

is one in which the circumstances havo clear and present implications for the

efficiency or safety of the flight, requiring diagnostic and corrective action

to be taken.

When the panel appears alone, the subject's visual attention is not split

between a reading task and a panel monitoring task. In these conditions the

instruments can show a rate of change. This allows us to study an important

class of decisions - those involving the detection of changes and the

integration of decision cues in real time.

Finally, each subject's mean reading speed is unobtrusively calculated in

syllables per second during the reading of the program run instructions.

Since SETSCENE analyzes scenarios and options for word and syllable counts, as

described above, individual differences in reading speed can then be factored

out of the data.

2.2.3 Attribute and option coding. After creating each MIDIS scenario,

the flight instructors on the design team proceeded to generate two kinds of

codes, which were applied to and characterized the scenario in question.

First, each opti.on in a decision scenario was assigned an optimality rating,

on a scale from 5-1, in which the correct (best) option was arbitrarily

assigned a value of 5. The less optimal options were assigned values ranging

from 1-4, depending upon how close they were to being plausible alternatives.

Second, the correct option in each scenario was assigned an attribute value

code for each of the 11 critical cognitive attributes listed in Table 1.

These attributes were selected based upon our content analysis of the flight

scenarios in MIDIS, guided by our expert analysis of pilot judgment. A value
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Table 1. Scenario Demands of Cognitive Attributes.

1. Flexibility of Closure - the ability to find a given configuration in a
distracting perceptual field.

2. Simultaneous Mental Integrative Processes - the ability to keep in mind
simultaneously or to combine several premises or rules in order to
produce a correct response.

3. Simultaneous Visual Integrative Processes - the ability to sample a
select number of items from a complex visual display, and to combine this
information in order to produce a correct response.

4. Sequential Memory Span - the ability to recall a number of distinct,
sequential items from working memory.

5. Arithmetic Load - the ability to perform basic arithmetic operations with
speed and accuracy.

6. Logical Reasoning - the ability to reason from premise to conclusion, or
to evaluate the correctness of a conclusion.

7. Visualization of Position - the ability to perzeive or maintain
orientation with respect to objects in space, and to manipulate this
image into other arrangements.

8. Risk Assessment and Risk Utilization - the ability to accurately assess
the probability or riskiness of a situation, and to utilize this
assessment in effectively carrying out decisions.

9. Confirmation Bias - the tendency to seek confirmatory, rather than the
more appropriate dLsconfirmatory evidence, when testing a given
hypothesis.

10. Impulsivity-Reflectivity - a measure of cognitive style differentiating
those who tend to be fast and inaccurate (impulsive) or slow and accurate
(reflective).

11. Declarative Knowledge - the ability to answer correctly a number of
"textbook" questions covering a broad range of general aviation issues.
This measure specifically excludes procedural or experience-based issues,
focusing only on declarative facts and guidelines.

of zero indicated that the attribute was not relevant to the decision. Values

f-rom 1-3 Lndicated how critical it was for-the subject to possess strength in

the attriihure in question, in order to choose the optimum option. In the ca~e
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of the confirmation bias, this coding was reversed (i.e., high values

indicated how critical it was to avoid the confirmation bias).

2.3 Cognitive Battery Development

As shown schematically in Figure 4, the goal of cognitive psycho~ogist:s

in the project was to develop a set of cognitive tests that would match, a;s

closely as possible, attributes that were identified in the scenarios. Ouf

efforts to identify existing cognitive tests that assessed these attributes,

parallel an analogous effort performed-by Irizarry and Knapp (1986) in their

study of individual differences in Army Intelligence Analysts. Based in parti

upon their study, and upon our own review of the literature on individual

differences and cognitive attributes in decision and judgment, the development.

of the test battery proceeded as follows.

Our initial goal was to locate any existing standardized tests that

provide measures on each of the relevant attributes. In some instan',e,;, uorre

than one standardized test exists for a single attribute. In that case. onu

was selected based upon the criteria of administration time, face validity and

reliability. For those attributes for which we were unable to locate a

standardized measure, specific tests were developed within our laboratory.

Thus, the compiled test battery consists of a one-to-one mapping.between

cognitive attributes relevant to pilot judgment and cognitive tests

specifically designed to measure each individual attribute. Table 2 provides

a list of the specific tests comprising the cognitive test battery.

A number of cognitive measures were taken directly from the Educat- ,n.:ul

Testing Service (ETS) kit of Factor-Referenced Cognitive Tests. The speci[Lc

cognitive factors and tests selected from this kit included measures of

flexibility of closure (hidden figures), simultaneous integrative processeý;

(following directions), sequential memory span (visual number span),
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Table 2. Cognitive Test Battery.

1. Hiddsn Figures Test
2. Following Directions Te*t
3. Cue Sampling - Visual Integration Test
4. Visual Number Span Test
5. Subtraction and MHltiplication Test
6. Nonsense Syllogisms Teat
7. Surface Development Test (Spatial Visualization)

Card Rotations Test (Spatial Orientation)
8. Risk Assessment and Utilization
9. Wason's 2-4-6 Rule Discovery Task

10. MFF Test and Impulsivity Self-Report Inventory
11. Aviation Declarative Knowledge Test

arithmetic load (subtraction and multiplication), logical reasoning (nonsense

syllogisms), spatial orientation (card rotations), and spatial visualization

(surface development). For each of the cognitive factors listed, the ETS kit

contained two or more specific tests. We selected one based upon the criteria

described above. The remaining portion of this section describes the tests

that were developed within our laboratory, or were modified in some way.

2.3.1 Rule dliscoveXy task (Item 9). The extent to which subjects

adopted a confirmatory bias, or the more optimal disconfirmatory strategy, was

measured using an adaptation of Wason's (1960) "2-4-6 rule discovery" task.

Previous research by Irizarry and Knapp (1986) suggests that this task is a

valid measure of individual differences in hypotheses testing strategies.

For each trial, subjects were presented with a set of 3 numbers (e.g., 2-

4-6), and asked to generate an hypothesis about the set membership rule (e.g.,

numbers increasing by two). Subjects were then asked to generate another set

of three numbers to test the accuracy of their hypothesis. This response was

then scored as adhering to.a confirmatory or disconfirmatory strategy.
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Subjects adopting a confirmation strategy would test the hypothesis by

generating a series of numbers consistent with the hypothesis, while those

adopting a disconfirmation strategy should generate a set of numbers

inconsistent with the hypothesis. Five trials in total were given, so that

each subject's score was the proportion of the total trials that a

disconfirming strategy was used.

2.3.2 Reflectivitv-imDulsivitv (Item 10). This test measures cognitive

*, style differences in information processing. Subjects are typically

categorized as "impulsive" if their performance on a task is rapid and

inaccurate, and categorized as "reflective" if performance is slow and

accurate. The primary index of reflectivity-impulsivity is the Matching

Familiar Figures (MFF) test (Kagan, 1966; Kagan, Rosman, Day, Albert, &

Phillips, 1964). The test requires subjects to select one exact match to a

prototype from a set of exemplars. For purposes of the test battery, the

adolescent/adult version of the MFF was used.

While pilot data for this test displayed large variances in response

times, little variance in accuracy was observed. Thus, to aid in

discriminating reflective and impulsive subjects, four items from the

impulsivity scale of the Eysenck personality inventory were added (Eysenck &

Eysenck, 1963). Previous research by Dickman (1985) and by Dickmau and Heyer

(in press) suggests that these items predict reflective-impulsive performance

on a speed-accuracy tradeoff function. These items are shown in Table 3.

2.3.3 Risk assessment and utilization (Item 8). These critical

Scharacteristics were measured by a test developed within our laboratory (see

Appendix A). The test consisted of four parts: proportion estimation, cause

of death estimation, probability estimation of aircraft accidents, and

utilization of gambles. The first part, proportion estimation, required

subjects to estimate percentages or proportions various figures (e.g.,
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Table 3. Eysenck Personality Inventory - Impulsivity Scale Items.

1. Do you stop and think things over before doing anything?

2. Do you generally do and say things without stopping to think?

3. Do you like doing things in which you have to act quickly?

4. Are you slow and unhurried in the way you move?

estimate the percentage of the circle that is shaded, or estimate the degree

of an angle).

In Part II, in keeping with the tradition of Slovic, Fischoff, and

Lichtenstein and colleagues (Lichtenstein, Slovic, Fischoff, Layman, & Coombs,

1978; Slovic, Fischoff, & Lichtenstein, 1976), subjects were asked to estimate

the number of people killed each year by such factors as electrocution,

automobile accidents, cancer, or tornadoes. Similarly, Part III dealt with

estimating frequencies of different types of aircraft accidents, thus

providing an aviation context.

In Part IV, risk utilization was assessed by presenting the subject with

a series of choices between a risky gamble and a sure bet. In each case, the

expected utilities (EU) were equal (in some questions, the EU was negative,

and others, positive). For each of the four parts, it was hypothesized that

well-calibrated subjects would be fairly accurate in their estimations and

utilization, while "risky" or "conservative" behavior should fall at the two

extremes.

Separate scores were derived for each of the four parts, and thus could

be treated separately as individual measures of different types of risk

estimation and utilization, or combined to represent a single measure of
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"riskiness performance." Pilot data revealed that subjects' performance often

was inconsistent across the different parts (for example, those who were

conservative in risk estimation were often not conservative in risk

utilization). Thus, for purposes of the final data analysis, each of the four

parts was treated individually.

2.3.4 Simultaneous visual inte2ration (Item 3). This visual cue

sampling test was developed in our laboratory and is a computer-based visual

integration task. Each trial consisted of twelve lines presented

simultaneously on a CRT screen for a brief exposure duration. The lines were

"of 3 different lengths: short, medium, and long. Above each line was a

random distribution of X's. An example of a typical trial screen is presented

in Figure 7. The subject's task was to find the four long lines on the screen

and total the X's on only those lines. The position of the lines did not vary

from trial to trial, only the number of X's presented each time. Thus, this

test determines how accurately an individual is able to integrate only the

relevant information from known spatial locations in a "cluttered" display.

2.3.5 Declarative knowledge (Item il). In order to account for variance

attributable to declarative flight knowledge, an aviation general knowledge

test was developed by our flight instructors. This test was composed of a

number of items selected from the FAA instrument exam. These items were

* carefully selected to comprise a representative sample of meteorological,

navigational and systems questions. This test consisted of 25 multiple choice

items and is contained in Appendix B.

Analysis of data from pilot studies for those tests developed and refined

- within our laboratory resulted in a range of individual differences for each

independent measure, as well as for specific items within a measure. The one

exception was the "2-4-6" Rule Discovery task as a measure of individual

differences in hypothesis testing. Despite several revisions, the test failed
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Figure 7. A representative display screen for the visual cue sampling

test. For successive trials, the number of X's per line varied, while

the position of lines on the screen did not.
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to reveal any individual differences, Since it was not clear to us whether

all subjects adopted a confirmation strategy or merely did not understand the

task at hand, the test was dropped from the final battery.

3. METHOD

The subject pool consisted of flight instructors from the University of

Illinois Institute of Aviation, experienced Instrument/Commercial pilots with

diverse backgrounds (e.g., Air National Guard, professional airline and

private business flying), and Instrument Rated student pilots from both the

Institute and local flight schools.

The main experiment is based upon a sample of thirty eight subjects

divided into two cohorts, twenty pilots from the experienced group and

eighteen from the "novice" group.

Data collection was conducted in two sessions for each subject. In the

first session, lasting approximately two hours, the battery of psychological

tests was administered. The second session (in most cases taking place on a

subsequent day) involved the MIDIS simulation itself. Subjects were

instructed to plan an IFR flight from Mountain View, Missouri, to St. Louis

Regional (Alton) in Illinois. Sectional charts, L-charts, Approach Plates,

Airport Facility Directories and a Flight Service Station weather briefing

were provided. Although no "stick-and-rudder" flying is involved in a MIDIS

simulation pilots unfamiliar with the aircraft simulated by MIDIS, the Beech

Sport 180, were given a briefing on the performance characteristics of the

aircraft for flight planning purposes. Subjects were also provided an

opportunity to review a screen-print of the instrument panel. No time limit

was imposed for flight planning and different subjects took between 20 minutes

and one hour to complete this phase. Pilots were instructed to plan the

flight in their customary fashion with due regard to both the safety and
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efficiency of the trip. Subjects were informed that these two factors would

be evaluated by the MIDIS simulator.

Following the flight planning, subjects performed the MIDIS simulation.

The simulation was presented on an IBM AT computer system which was enclosed

in a sound attenuating, dimly illuminated subject station. Subjects were

instructed to treat the simulation like an actual aircraft flight. They were

informed that the entire simulation sequence was under computer control and

after it was started would automatically sequence. They were asked to remain

in the subject booth until the simulated engine noise stopped indicating an

end to the simulation session.

The screen presentation displayed first an overview and general

description of the MIDIS system during which reading rate was measured five

times. This was accomplished by timing the intervals between the subject's

successive key press requests to bring up the next display. The general

description was followed by a practice flight designed to train subjects in

the use of the color-coded keyboard and MIDIS conventions. The practice

flight was not time-limited and could be re-entered and repeated until the

subject felt comfortable with the system. The practice sequence was "flown"

for an average of 15-20 minutes. After the practice flight a sample

"feedback" screen was provided to indicate the form of the safety and

efficiency evaluation which would terminate the run. After a reminder weather

briefing, the flight from Mountain View to St. Louis was started.

4. ANALYSIS

Each possible decision choice was rated for optimality on a five point

scale. The decision quality (DQ) algorithm combines the optimality of the

option chosen with the confidence rating and response latency in the following

manner:
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DQ - O+(O-ABS(O-C)] + or - (zL*W)

where 0 is the optimality rating 1 to 5, C is confidence rating 1 to 5, zL is

the z-score value of the latency of the decision, and W is a weighting which

varies with optimality rating. The first expression in the algorithm

involving optimality and confidence gives a point score from -2 up tc 10.

Subtracting the absolute value (ASS) of the difference in optimality and

confidence from the optimality rating gives credit for being "well-

calibrated," i.e., for rating level 5 decisions at confidence 5, and level 4

decisions at confidence 4, etc. By the same token it penalizes

overconfidence. The second expression introduces latency into the overall DQ

score. Lz is derived by computing the standardized score of all pooled

responses (across subjects AND scenarios). How latency affects DQ score,

however, is conditional upon whether the optimality of the decision choice is

above or below 3. Above 3, rapid response time increments the point score.

Below 3, rapid response time is penalized. The value of Lz is doubled to give

a range approximately equal to that of other components of the DQ score. The

final value of DQ ranges over approximately 20 points. The DQ metric chosen

is significant in that it acknowledges that options chosen in a decision are

not categorically right or wrong, but may vary in their degree of correctness.

Data files from MIDIS runs were merged with the psychometric data files

and z-scored using LOTUS, and subsequently analyzed using SPSS-PC on the IBM

PC/AT.

5. RESULTS

5.1 Factor Analysis of Psychometric Data

The psychometric test battery data for all 38 subjects was factor

analyzed to determine the pattern of abilities defined by the tests. Fifteen

psychometric measures were considered in this analysis, including two measures
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of reflectivity/impulsivity (MFF and self-report items), three measures of

visualization of position (hidden patterns test and surface development test),

four individual sub-tests within the risk assessment and utilization battery,

and seven other measures corresponding in a one-to-one fashion with the

remaining seven cognitive attributes presented earlier (see Tables 1 and 2).

The factors were initially extracted using a principal-components

analysis. The seven factors obtained in this analysis were then subjected to

varimax rotation procedure. The data presented in Table 4 are the results of

nine iterations of the varimax procedure. Given the small number of subjects

relative to predictor variables however, caution is advised in interpreting

each of these factors. Therefore, the following discussion will focus on only

the first three factors (those with the highest factor-loadings). For sake 6f

Table 4. Factor Matrix for Psychometric Test Data.

Factog I Factor _Z Factor I Factor !J Factor F Factor 7

Hidden Pattns. .826 -. 114 .056 .058 .202 -. 059 .149
Card Rotations .779 .185 .105 .062 -. 310 .076 -. 079
Surface Devlp, .706 .229 .186 -. 063 .191 -. 139 .336

Following Dirs. -. 003 .895 -. 109 .082 .010 .014 .060
Nonsense Syllog. .242 .688 .168 -. 209 .199 .238 -. 085

Risk IV (Gambles) -. 130 .171 -. 789 -. 065 -. 054 -. 061 -. 011
Risk II (Deaths) .123 .287 .665 -.105 -. 085 -,351 -. 010

Risk III (Avrisk) -. 087 -. 177 .047 .858 .039 -. 064 .066
Math .010 .251 -. 361 .533 .054 .448 .223
FAA Quiz .252 .321 .467 .529 -.121 .285 -. 014
Vis. # Span .074 .216 -. 057 .148 .830 -. 084 -. 140

Vis. Scanning .006 .138 -. 069 .422 -. 602 -. 331 -. 075

MFF Test -. 044 .119 -. 052 -. 005 .028 .737 -. 123

Risk I (Probest) .011 .011 -. 121 .086 -. 003 -. 212 .764
Self Report -. 116 -. 033 .315 .294 -. 236 .369 .573
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clarity, Factors 1, 2, and 3 will be referred to hereafter as the spatial

factor, the logical reasoning and integration factor, and the risk factor

respectively.

This factor is comprised of three psychometric measures: the hidden

patterns test (flexibility of closure), the card rotations, and surface

development tests (both measures of visualization of position). Factor

loadings for the three measures were 0.826, 0.779, and 0.706 respectively.

Given that all three tests involve a degree of complex spatial reasoning, this

strong interrelationship is to be expected.

Logical Reasoning Factor

Two psychometric measures, the nonsense syllogisms test (logical

• reasoning) and the following directions test (simultaneous mental integrative

processes), have loadings with values of 0.895 and 0.688 respectively on this

mental reasoning and integration factor. It was mentioned previously that the

first factor combined measures involving complex spatial reasoning.

Similarly, the second is comprised of those tests requiring a degree of

complex 12gical reasoning.

Risk Factor

Of the four subtests comprising the risk assessment and utilization

factor, two loaded highly on this third "risk" factor. The two tests, Risk II

(estimation of causes of death) and Risk IV (utilization of gambles) had

loadings of 0.789 and 0.665 respectively. Of particular importance is the

inverse relationship between these two variables, which may be interpreted as

defining a "dangerous world" syndrome. Individuals who perceive fatal risks

to be high (estimating the probability of death as great) are conservative in
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their choice among gambles (most often preferring the "sure bet" over the

risky option).

These three groups represent the strongest factor relationships of the

seven presented in Table 4. Therefore, for purposes of further analyses,

three grouped factor scores (spatial, logical reasoning and risk) were

computed for each subject. The factor score is comprised of the weighted

total of those psychometric variables that load on a given factor. These

factor scores, along with the individual psychometric scores that did not load

strongly on a particular factor, reflect the profile of individual differences

in cognitive abilities that were taken into consideration throughout the

remainder of the data analysis.

Finally, a few other interesting results of this factor analysis should

be noted. As may be observed in Table 4, a fourth factor groups the

declarative knowledge FAA quiz with mathematical ability and Risk III

(aviation-specific accident estimation). It is reasonable to assume that both

the FAA quiz and the domain-specific risk test reflect measures of declarative

aviation knowledge. The final measure of risk assessment, Risk I (probability

estimation), appears to be quite different from any of the other risk

subtests.

Important for its nonsignificance is the finding that our two measures of

impulsivity/reflectivity did not load on a common factor. This finding

implies that these two measures proposed in the literature as determinants of

the impulsivity/reflectivity trait (MFF-Kagan, 1966; self-report items-Dickman

& Meyer, in press) were not in fact tapping the same aspect of cognitive style

in the population that was tested here. Such interpretations are extremely

limited, however, given the low power of the fa.ctor analysis.
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5.2 UMTS Data Processing and Analysis

Data from MIDIS, the Test-Battery and the Attribute Ratings were

integrated into three field data files. The first field contained subject

identity, biographical information and MIDIS performance data. The second

field held the eleven attribute ratings for the individual flight scenarios,

and the third field contained the psychometric data from the fifteen measures

in the test-battery along with the three factors scores described in the

previous section. Three additional variables were also computed.

The first of these, Calibration, was a points score consisting of the

optimality rating on the selected action alternative plus an increment for the

extent to which an individual was "well calibrated," that is, the extent to

which his confidence rating accurately reflected his decision performance in

terms of optimality. One further calculation yielded the global "decision

quality" variable DQ. This was computed from Calibration and standardized (z)

scores of Latency, and thus incorporated all three primary dependent measures

- decision optimality, confidence and decision latency.

Analysis of these data was carried out using SPSS/PC+ (Norusis, 1986),

the microcomputer version of the Statistical Package for the Social Sciences

(Nie, Hull, Jenkins, Steinbrenner, & Brent, 1978). Three procedures were

used: Pearson Product Moment correlation, Forward Stepwise Multiple

Regression, and Discriminant Analysis. All statistical procedures were

implemented for both type 1, static scenarios, and for type 2, dynamic

scenarios. As noted, all latency measures were corrected for reading rate, on

the basis of a covert assessment of this variable made during the presentation

of instructions. The three primary dependent variables in the regression

procedure were Decision Optimality, Confidence Rating, and Decision Response

Latency. Decision Quality, Problem Study Time and (in dynamic scenarios)

Problem Detection Time were also explored as dependent measures.
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In a preliminary analysis, visual inspection of the scatter plots between

performance and abilities suggested that the relation between the predictor

and criterion variables was inconsistent between subjects of low and high

experience. A different pattern was manifest for the flight students than for

the flight instructors for example, and performance of the third group of

local pilots outside the Institute of Aviation, also varied as a function of

experience. As a consequence, a decision was made to divide the total sample

into two groups on the basis of flight experience and to apply the analyses in

turn to each group. A cutoff was chosen at 400 hours because this was a

figure that: (a) divided the group approximately into equal groups (a sample

of 18 "novices" and 20 "experts"), (b) on a log plot of flight hours, formed

the mean point on a roughly normal distribution, and (c) provided a grouping

that included all students in one group and all flight instructors in the

other.

The several aspects of the data, and the multidimensional characteristics

of the experiment (i.e., with attributes, abilities, subjects, and problems)

allow for a large number of different approaches to data analysis. Figure 8

provides a framework for describing these different approaches.

Shown at the top of the figure are hypothetical scatter plots relating

the assessed level of six subjects on two cognitive attributes, to the

decision performance vector. The term "performance vector" is used to

acknowledge the existence of 5 or 6 different performance measures (e.g.,

optimality, latency). The six subjects are shown as belonging to the two

cohorts labeled "novice" and "expert."

The two panels at the top of Figure 8 illustrate the differences in the

predictive power of the two hypothetical attributes for this set of

hypothetical data. Attribute I shown in the left panel provides a reasonably

39



Attribute I Attribute 2

0 0
Performance 0

Vector 0 0S~0

Low High Low High

Attribute Level (Test Battery)

0 Expert

0 Novice

//

Performance 0 . ... Low
Vector /,ViI •

d e 3 Demand

p 4/ 4

Low High

Attribute Level
(Test Battery)

Figure 8. Dimensions underlying hypothetical data for six subjects.
The lower panel represents the three dimensional expansion of the
data in the upper left.
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good prediction of decision quality for the group as a whole. Furthermore it

nicely discriminates the performance of novices from those of experts. But

when prediction is examined within each of the two cohorts, the attribute

predicts expert performance but fails to do so for the novice. Attribute 2 on

the other hand does not discriminate the two cohorts, nor provide an effective

predictor for the total subject pool. However, in contrast to attribute 1,

the second attribute does predict performance of the novice, but not of the

expert. Hence in a multiple regression analysis of these data, very different

beta weights would be applied to the two attributes when analyzing novice vs.

expert performance.

In the top two panels of Figure 8, each performance vector may be

considered as the mean value for a subject across all problems encountered.

But the development of scenarios in MIDIS allowed different scenarios to be

coded differently on a given attribute. This.was done to test the hypothesis

that only problems which demanded a given attribute would show performance

that depends upon the relevant subject's ability. This incorporation of

attribute levels is shown in the bottom panel, in which a third dimension is

added to define the demand level on attribute 1, for each of two problems of

differing demand, encountered by all six subjects. Thus, each subject's data

now represents a "slice" in the cube along the perspective depth dimension of

the figure. Three features may be highlighted with these hypothetical data.

First, for both novice and expert subjects the attribute measured on the test

battery is not a predictor of decision performance when the decision problem

demands little of the attribute in question (near the back of the cube). This

is in contrast to expert performance when the demand level is high (toward the

front of the cube). Second, the attribute fails to discriminate expert from

novice decision performance on problems when the demand level for that

attribute is low, but does so when demand is high. Third, projected along the
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left side "wall" of the cube is the gradient of decision performance against-

demand level for the mean performance of the two groups. Here we see that

increasing the demand level on the attribute has a strong effect on novice,

but not expert performance.

The hypothetical data presented in Figure 8 thus reveal two intrinsically

different styles of analysis: correlational analysis, and analysis of

differences between groups. Each of these styles in turn may be carried out

across all problems, or only on that subset of problems that are rated high on

the different attributes, and each of these may also focus on the effects of

ability differences or problem demand differences.

5.3 Between Groups Means Analysis

Analysis of the psychometric test battery scores for the two cohorts

revealed that there were no significant differences between the two groups on

any of the test measures, including the FAA-based test of declarative

knowledge. Therefore, all attributes appear to show the pattern of attribute

2 on the top of Fig"re 8. Table 5 presents a comprehensive list of the

differences in decision performance between the novice and expert groups for

static and dynamic scenarios. The table highlights those differences that

appeared significant with a two tailed t-test in the decision performance

measures. Shown on the top row of the table are differences between groups on

all problems, pooled across the differences in attribute scores. Shown in the

nine rows below are differences observed specifically on problems that were

rated high on the attribute listed. Only those performance measures that

significantly differentiated the two groups are shown. Two tailed tests were

employed because there were no a prior hypotheses about which group would

perform "best."
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Relative to the total number of measures assessed, the table reveals few

differences between groups. For example, the groups did not differ in

decision optimality or decision quality for any subset of the problems. The

most salient difference is the greater confidence shown by experts in the

static decision problems. This variable discriminated the groups on the total

pool of problems, as well as on those problems that were high on most of the

specific attributes. Only on problems that possessed high demands for

arithmetic and risk assessment was confidence equal for the two groups.

Subsequent analysis revealed that a major source of difference in

confidence between the two groups may have been related to differences in the

subset of problems selected by each. Given the branching nature of the MIDIS

program, it was possible for any two people to take quite different "paths"

through the flight. In a subsequent analysis a similar comparison of

confidence was carried out only on that subset of scenarios to which a

majority of subjects responded. This analysis removed data points from more

subjects in the expert group. The analysis, now carried out on roughly 80% of

the total data set, revealed no significant difference in confidence between

the two groups (Novice: 4.00; Expert: 4.17). From this analysis, it was

concluded that some experts had a tendency to choose options which led them to

follow-on scenarios about which they were more confident than the rest of the

sample.

The differences between groups on the dynamic problems were somewhat less

consistent. Here experts responded more rapidly on problems that demanded

simultaneous integrative processing, while novices made more rapid decisions

"on those problems with high demands for field independence and visual cue

sampling (i.e., the two attributes that defined the p aspects of the

task). Novices were also slightly more confident on problems with high

sequential memory demand. Once again, for dynamic as well as static
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scenarios, the two groups did not differ in terms of the optimality of their

response.

The relation between confidence and optimality scores for both groups

provides an index of "calibration": to what extent is greater confidence

rated to -.hoices that are more likely to be optimal. To assess calibration,

the mean confidence rating for the two groups was computed separately for

problems on which optimality score of 1, 2, and 3 was obtained (i.e., more

"incorrect" problems), and for problems on which an optimality score of 4 and

5 was obtained. These data are shown in Figure 9. It is evident from the

figure that both groups are somewhat calibrated, in that their confidence

grows on choices which are "easier" (i.e., which they are more likely to

answer correctly), and does so at the same rate for both groups (F1,35 -

21.77; p < 0.01). However, since both confidence and optimality variables

were rated on the same 5 point scale, it is easy to see that the change in

confidence is not nearly as steep as the change in optimality would dictate.

The difference in mean optimality between low and high problems is around 1.5

I units. The difference in confidence is only 0.25 units.

The data thus suggest that both experts and novices are reasonably well

calibrated for choices which they make optimally (and novices slightly

underconfident); but both groups fail to down weight their confidence

appropriately as problem difficulty increases, a classic pattern observed in

other decision making fields (i.e., Fischoff & MacGregor, 1981; Fischoff,

.* Slovic, & Lichtenstein, 1977; Kahneman, Slovic, & Tversky, 1982).

5.4 Effect of Problem Demand

As we have described above, each problem was coded on the 9-attribute 4

point scale as to the demand for particular attributes. It was anticipated

45



J:

7.;' I,

A '

EXPERT * -

NOVICE 0 "

3/
CONFIDENCE /

2
S" /

2 4.5
MEAN OPTIMALITY

Figure 9. Confidence ratings assigned to "incorrect" (optimality 1, 2, and 3)
versus "correct" (optimality 4 and 5) decisions. The figure presents novice

and expert performance. The positive diagonal line represents the line of
"calibrated" confidence assignment. The abscissa values of 2 and 4.5

represent the mean optimality values of "incorrect" and "correct" Judgments
respectively.
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that to the extent that a problem was rated high on these scales, its level of

decision performance would be reduced. To establish if this was the case, a

total difficulty score for each problem was computed by summing the ratings

across all attributes. This variable was then correlated with the various

performance measures, and revealed that, for the "novice" pilot group,

difficulty influenced problem study time for the static scenarios (r - 0.46; p

< 0.03) and response latency for the dynamic scenarios (r - 0.59; p < 0.01).

However, none of the performance measures of the expert appeared to be

affected by the aggregate problem demand.

Subsequently the data were broken down attribute-by-attribute, to examine

the sensitivity of performance measures to the demand of each attribute. This

demand is indicated by the projected slopes on the left "wall" of the cube at

the bottom of Figure 8. The significant (p S 0.05) correlations between the

attribute demand variables and performance for the two cohorts, for both

static and dynamic scenarios, are shown in Table 6. The correlations that are

underlined are those that run in the unexpected direction of poorer

performance (lower optimality or high latency) associated with lower attribute

levels. The table suggests some substantial differences in the variables that

make problems difficult for the two groups. For example, the expert suffers

when static problems require field dependence (the correlation with optimality

is negative) while the novice does not, and the expert's decision performance

is slowed when static problems demand more simultaneous integrative processes

"'. while the novice's performance is not. For dynamic scenarios, the novice

becomes less optimal when there is a greater demand for simultaneous

integrative processing, while the expert actually becomes more optimal. The

table also reveals a relatively large number of correlations that run in

unexpected directions, indicating better performance with greater demand.
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Table 6. Correlations of Problem Demand with Performance Measures. All
correlations reported are p < 0.05. (*) indicates p < 0.01.

CONFIDENCE LT LATENCY

STATIC
Novice

VISPOS .42
VISCUE
RISKNEED .41

Expert
FIELD -. 42 -. 40
SIMINT .53* .45
ARITH -. 48*
VISCUE -_ -_

DYNAMIC

Novice
SIMINT -. 53* -. 53*
FIELD .42
LOGIC .4
VISPOS .56*
DECLKNOW ýL,4

Expert
SIMINT .4-
VISPOS .42 Aft
FIELD -. 41
ARITH
LOGIC .51*

This by itself is not altogether too surprising since increasing levels on one

particular attribute may have been correlated (across problems) with

decreasing levels of other attributes. It is also possible that problems

which provide more of a particdlar kind of attribute may in fact capitalize

upon the strength of a cohort. Thus, for example experts seem to benefit more

to the extent that visualization of position is required. This hypothesis

will be addressed in the discussion.

5.5 Prediction of Overall Decision Ouality

The previous sections have focused on the differences between the two

cohorts, in their overall performance, and on how their performance is
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I affected by problem demand. In this section we now address how their

I performance is affected by differences in cognitive ability rithin each group.

Based upon the output of the factor analysis, the first three factors

discussed in section 5.1 (spatial abilities, reasoning and risk assessment)

were extracted as relatively stable estimates of thone cognitive abilities.

Factor scores on these three were calculated for each subject, and these

values, along with the FAA test score, and scores on the tests that did not

load on th'! three primary factors were included in a stepwise multiple

regression analysis to predict decision performance. The predictor variables

then included the Spatial Ability, Reasoning, and Risk Factors, Visual Number

"* Span, Mathematical Ability, Visual Scanning, Probability Estimation and two

indices of impulsivity. These were included along with three domain-specific

predictor variables: Total Flight Hours and two measures of declarative

knowledge, the FAA Instrument Flight Written Test, and Risk III Test

knowledge of aviation accident risks.

Table 7 presents the results of this regression analysis for static (left

column) and dynamic (right column) scenarios. Listed down the left margin are

the criterion variables. Beneath each criterion variable is listed the order

of predictor variables selected, along with the ::otal variance accounted for.

This variance (and the associated significance levcls) has been corrected

-4 downward to guard against the potential capitalization on chance associated

* with the multiple regression analysis (Tatsuoka, 1976).

The left side of the table wbich presents the prediction of performance

in the static scenarios, reveals that few if any variables are effective

predictors. Confidence ratings were predicted by scores on the risk tests and

*i by the total flight hours (high domain specific risk estimates and more hours

producing greater confidence), while latency and problem-study time were both
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Table 7. Multiple Regression Analysis (N- 38).

I= I (staic) I= IL U(DnAai
DQ: RISKFACT .07 (NS) DQ: VISNMSPN .088 (.05)

FAA .144 (.05)

TOTURS .224 (.01)

OPT: FAA .05 (NS) OPT: VISNMSPN .152 (.01)
FAA .212 (.01)
TOTHRS .282 (.01)

CONF: TOTHOURS .12 (.05) CONF: RISK .147 (.01)
PROUST .22 (.01) TOTHRS .229 (.01)
AVRISK .28 (.01) AVRISK .287 (.01)

PST: MFFTEST .25 (.001) PDT1: SPATIAL .113 (.05)
REASON .39 (.001) AVRISK .173 (.01)

LATENCY: 1FFTEST .1? (.05)
REASON .23 ..Ot)

predicted in C.a expected direction by the MFF test of impulsivity-

reflc.tivity. More "impulsive" responders tended to respond faster, and study

" tlý. problem for a shorter time on the MIDIS task.

Somewhat more variance was accounted for by predictions in the dynamic

scenarios shown on the right. Predictors of decision quality and optimality

included the working memory test of visual number span and scores on the FAA

questionnaire (both in the expected direction of better test scores leading to

higher quality decisions). Measures of confidence in the dynamic scenarios,

as was true in the static scenarios, were predicted by scores on the risk

tests, along with the total flight hours.

Even though the predictions from the analysis depicted in Table 7 are

statistically significant, they are in a sense disappointingly small. The

proportion of variance accounted for in this analysis ranged from the high

teens to the low 30s percent. Hence, as in previous analyses, the multiple
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regression analysis was repeated on each of the two cohorts separately, to

determine whether the pattern of predictors was different. However, because

the two cohorts did not entirely proceed through the same set of scenarios,

this analysis was carried out on the "restricted set" of scenarios discussed

in section 5.3. This refers to the path through the flight that was common to

most subjects. Tables 8 and 9 present equivalent regression data for the

static and dynamic scenarios respectively, with the novice groups data shown

on the left and the expert groups data shown on the right of each table.

Considering first the static scenarios in Table 8, the data reveal an

interesting and important contrast between the two groups. For the novice

group, the optimality of performance is predicted reasonably well by two

measures of declarative knowledge: the FAA test and the "Avrisk" measure of

aviation risks. Here we see that those novices who tend to be.more

conservative (or estima-e higher dangers) scored more optimally. In contrast,

the optimality of the e.perts' decision performance is simply not explained.

This drop in the predictive power of declarative knowledge from novices to

experts has important implications that are discussed below.

Confidence ratings, in the static scenarios, like optimality, are also

predicteli differently for novices and experts. For novices, greater

mathematical ability leads to lower confidence ratings. Given the general

trend for overconfidence seen in Figure 9, this finding would suggest that

better mathematical ability leads to better "calibration." As with

optinality, the battery measures are not at all predictive of expert

confidence ratings. Finally, the speed of problem study (PST) and response

(Latency) are also predicted differently for the two groups. Spatial ability

helps novices to perform more rapidly (a negative correlation with latency),

while for the experts a large portion of the variance is accounted for by the
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Table 8. Static Scenarios Multiple Regression Analysis. R2 Values Adjusted
for Capitalization on Chance.

""*Novice

N- 18 N - 20

OPTIMALITY: AVIAT RISK .181 (.)l OPTIMALITY: --
FAA QUIZ .42

SCONFRAT: MATH .21 (-) CONFRAT: ...
PST: SPATIAL .304 (-) PST: MFFT .427

VISNUMSPN .571
LATENCY: SPATIAL .307 (-) LATENCY: VISNUMSPN .205

A minus sign indicates a negative correlation between the predictor and
criterion variable.

Table 9. Dynamic Scenarios Multiple Regression Analysis. R2 Values Adjusted
for Capitalization on Chance.

N - 18 N- 20

OPTIMALITY: VISNUMSPN .316 OPTIMALITY:
CONFRAT: RISK1 .291 (-) CONFRAT: ---

MATH .512 (-)
PDT: SPATIAL .175 (-) PDT: FAA QUIZ .528 (-)

RISK FACT .591 (-)
MATH .618 (-)

impulsivity-reflectivity measure of cognitive style (again in the expected

direction with those having more impulsive styles responding more rapidly).

An interesting finding here is that those experts who have greater working

* .memory capacity, as measured by the visual number span test, take longer to

respond.

A similar pattern of greater predictive power for novices than experts

reappears in the dynamic scenarios shown in Table 9. For the novices,

optimality is predicted by the capacity of their visual working memory.
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Confidence ratings are predicted, as with the static scenarios, by

mathematical abilities. In addition, confidence is tied to the risk test of

probability estimation. Those who estimate probabilities higher tend to be

less confident. Finally, for the novices the speed of problem solving was

again related to spatial abilities. For the experts, as with the static

scenarios, neither optimality nor confidence were well predicted. The speed

of expert problem detection was reasonably well predicted by three variables.

Faster detections were made by: (a) those who scored lower on the FAA quiz,

(b) those who saw the world as "safer" (low scores on the risk faster), and

(c) those with higher mathematical ability.

In summary, the pattern of data reveals a few general trends. Prediction

is different between the two groups than across groups, which suggests that

the pattern of skills predicting pilot judgment may evolve with experience.

The usefulness of declarative knowledge declines as experience increases, and

is replaced by ability factors that are not apparently assessed in the current

battery. Also, confidence is better predicted for novices than for experts,

and different variables influence decision speed for the two groups. Spatial

abilities facilitated rapid responses for novices, but not for experts.

Finally, where variables do predict, they do so in an orderly fashion and

generally in the expected direction. For example, subjects witb higher

estimates of risk tend to perform more optimally. Impulsive experts tended to

respond (on MIDIS) more rapidly than did reflective ones (although they were

not necessarily more likely to be accurate). Greater mathematical ability

produced better calibrated confidence for novices, and novice subjects who had

greater working memory capacity were more optimal at diagnosing the dynamic

instrument-based problems.
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5.6 Regr sgion on High Attribute Problems

Paraleling the procedures employed to discriminate groups in section 5.3

and depicted in Teble 5, the correlational analysis between abilities and

performance discussed in the previous section was repeated on a restricted

subset of problems that were coded high on the attributes. That is, the

regression analysis focused on the "front face" of the cube shown at the

bottom of Figure 8. In general, the results of this analysis were

disappointing. The cognitive abilities did not predict performance

substantially better for high attribute scenarios than for the scenarios as a

whole. Hence, the details of these results will not be reported.

5.7 Discriminate Analysis

In the previous discussion, all analyses focused on differences between

novice and expert groups, defined on the basis of experience. Yet from the

outset it was clear that the two groups did not differ substantially in their

levels of decision quality. A different approach was taken to try to

determine what cognitive attributes discriminated "good" from "poor" decision

makers, without reference to the cohort to which they belong. To accomplish

this, discriminate analysis was performed on the decision optimality scores

obtained from the top and bottom quartile performers. For static scenarios,

the two groups were discriminated quite well (Wilks' Lambda - 0.0052; p <

0.001) on the basis of all of the variables collectively. However, no

particular subset of abilities stood out above others as being the most

important discriminator. For dynamic scenarios, the overall discriminant

function was less successful in'differentiating the two groups on the basis of

the cognitive attributes (Wilks' Lambda - 0.078; p - 0.11). However, the

discriminate function revealed that three variables had significantly higher

weightings than others. These were total flight hours, visual number span,

and performance on the FAA quiz. Furthermore, the Wilks' Lambda statistic for
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each of these three variables in isolation produced significance levels of

0.07, 0.04, and 0.05 respectively.

6. DISCUSSION

The results of the present study are complex, and in some places slightly

contradictory. Nevertheless, there are a number of general trends that show

how problem difficulty measures and individual abilities affect decision

performance of low and high experienced pilots on both static and dynamic

scenarios. In certain respects the two groups responded alike. In the first

place, both groups tended to lose confidence as problems became more demanding

(as demand was defined by those problems that were more likely to be responded

to incorrectly), although the experts possessed more confidence in general

than did the novices. Secondly, neither group "down weighted" their

confidence as much as they should, and hence both groups became increasingly

overconfident as the problem difficulty increased. This failure to accurately

calibrate confidence has been often reported in the literature (e.g., Fischoff

& MacGregor, 1981; Fischoff, Slovic, & Lichtenstein, 1977). Finally, both

groups failed to show appreciable effects of problem difficulty as this

variable was explicitly manipulated in the experiment. That is, problems that

had been cided high on scaled attributes were not generally responded to with

less accuracy, "Ithough rated difficulty did have some effect on the latency

with whi h novices made decisions.

One p~articularly striking aspect of the results was the absence of any

difference in -he overall quality of decision performance between the "novice"

and "exmert" gs iLs. Only in terms of the confidence of their decisions did

experts show a "higher" level of performance and this difference was the

result in part of differences in the subset of problems that the two groups

faced. The abseae of group differences might possibly have been attributable
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to an added factor, favoring the novice group. That is, it is possible that

the novices might have achieved some intangible benefits in this cross-

sectional study because they were a younger group and therefore, presumably

more familiar with the computerized characteristics of the MIDIS program.

Differences between the groups were not extremely large but the

correlational analyses did reveal that more extensive qualitative differences

exist in terms of how each group was affected by problem difficulty (as shown

in Table 6). Likewise each group was affected by differences in ability

within a group, as discussed in section 5.5. These latter sources of

differences are of particular importance because they demonstrate the

relevance of the domain-independent battery items to the domain specific

measures of aviation judgment. Hence the main conclusions of this analysis

are worth reiterating. Declarative knowledge as assessed by the FAA quiz and

the aviation-specific risk test predicted novice but not expert performance,

and confidence ratings were predicted by mathematical and probability

estimation skills for novices but not for experts. Spatial abilities were

good predictors of response speed for novices, but not for experts. Finally,

the optimality of decisions for dynamic problems was predicted by the capacity

of visual working memory for novices, but not for experts. In fact, response

speed was the only aspect of expert performance that was well predicted, and

this variable was predicted by a relatively large number of variables.

A second issue concerns how the two aspects of differences, between

problems and between individuals, relate to each other. The answer, in

general, is that they do not, although there is no logical reason why they

should. That is, to say that novices as a group are influenced by problemi;

that: demand a lot of visual cue sampling does not necessarily suggest that cue

sampling ability will predict novice decision performance. Expressed in other
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terms, the covariance between the two axes at the base of the cube on Figure 4

and the vertical performance axis may be low.

Indeed the only region in which there is some consistency between the

dimlnolsions of problem difficulty and individual ability is in the relevance of

working memory, as assessed by the abilities test of visual number span, and

as coded by the attribute of simultaneous integrative processing. Here novice

performance is influenced by this attribute demand, and is predicted by

differences among the cohort in this ability.

Thus, overall the data cannot be interpreted to reveal a fully conclusive

picture of how pilots differ in their decision making capabilities. It is

possible to offer four hypotheses as to why substantial variance in MIDIS

performance was not accounted for by either group membership or ability

differences.

In the first place, it is possible that the test was sufficiently

unrealistic that it did not elicit credible decision behavior. Some evidence

that this may not represent a real concern however is provided by the

assessments of the 7ub.ect pilots, many of whom commented on the realism of

both the instrument panel and the flight scenarios. Nevertheless it is

important to realize that MIDIS does depart from real flight judgments in four

important respects: (1) The obvious risk factor of being airborne is missing

from MIDIS; (2) MIDIS contains no closed loop perceptual-motor flight control;

(3) Much of the information regarding the flight that a pilot would norn.ally

discern from environmental cues and views outside the cockpit is here

presented in a less compatible textual format; (4) The structured

characteristics of MIDIS require that a multiple choice format be offered, in

which the most optimal response is presented for recognition. Clearly in

actual pilot judgment, the pilot must often recall the correct diagnosis or

action.
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Secondly, it is certainly likely that two of the critical measures that

form the basis for the model testing, optimality rating and problem coding,

were perturbed by measurement error that led to a. reduction in the power of

our statistical tests. This is a result of the fact that both of these

variables were subjectively generated by expert opinions. To some extent

these noise sources were reduced in the ratings of optimality of each

alternative, because this rating was carried out independently by the two

flight instructors, and substantial agreement between them was observed (an

interrater reliability of +0.75). Measurement error however was probably a

greater contributor to the coding of attributes, since this was only performed

by one flight instructor. This greater level of error variance was quite

possibly responsible for the lack of success in obtaining attribute-specific

predictions of the ability tests (see section 5.6).

Thirdly, there was a moderate lack of structure in the MIDIS task.

Throughout the entire experimental program we have tried to strike a balance

between imposing sufficient experimental control to make the data remain

fairly structured, and sufficient freedom to make the MIDIS task unconstrained

and realistic from the pilot's standpoint. The former criterion ideally

dictates a linear decision path whereby all subjects receive the same

scenarios in the same order, independent of what their choices may have been.

The latter dictates a highly response-dependent, closed-loop branching

structure in which each subject may go through a totally unique sequence of

scenarios depending on the particular choices that he or she has made. In

hindsight it may be that the current program has been biased too strongly in

the latter direction, with a consequence being that similarly coded attribute

levels may have been derived (for different subjects) from performance on very

different scenarios. This lack of structure meant, for example, that only
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three dynamic scenarios were encountered by all thirty eight subjects, and led

to a situation whereby the novice group encountered more problems of greater

difficulty on certain key attributes, specifically visualization of position

and simultaneous visual cue sampling. The reduced data analysis which focused

on common scenarios addressed this issue to some extent, but with the

consequence of eliminating several data points (particularly of the novice

group) from the analysis.

A final concern in the present study is the posa.b'.ii.i 'hat our results

might have been overinterpreted, with an inc:'.4a',d Jikeli.aood • type I

errors. To guard against this possibility, tivu pzLiautionary step, were

taken. The multiple regression analyses, expli, ,.ly -)t~'ined corrections for

capitalization on chance, and two tailed rathc-ý than on, *32.Led .- tc;its were

used in the between-groups comparison. However, L.'e other de~t. •i2 not

adjusted for the increase in type I error resulting from the multiple

comparisons (across dependent variables, attributes, or scenario types). This

riskiness was intentional as we viewed the current data as more exploratory

than confirmatory, and the experiment was intended to identify hypotheses that

should be pursued in future research. As a result we did not want to commit

type II errors and ignore effects that might have been present, even at low

levels of reliability.

The four problem areas listed above are not trivial, and all are being

addressed in ongoing and future research with the MIDIS program.

Nevertheless, in spite of the problems, the major trends of the present data

encourage continuation of this line of approach, with suitable modifications

to both the task and the tests. These trends included the emergence of a

* reasonable level of MIDIS variance accounted for by the tests of fragile

information processing components, such as workin& :Aemory (visual number

span), and spatial abilities, and by tests of more crystallized knowledge such
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as risk estimation and declarative knowledge. Furthermore, the variance that

is accounted for is consistent with other decision making analyses that

identify both risk utilization, and the more fragile, resource limited

information processing components as important components in decision

performance, thus, tying the results back to the initial model presented in

Figure 1 (e.g., Einhorn & Hogarth, 1981; Slovic, Fischoff, & Lichtenstein,

1977).

Finally, two intriguing characteristics of the expert cohort suggests an

important direction in which the approach should be extended. These refer to

(i) the lack of expert variance accounted for in the multiple regression

analyses by the declarative knowledge measures of the FAA quiz and the

aviation-specific risk factors (see Table 8), and (2) the positive influence

on expert judgment performance of the demands imposed by simultaneous

integrative processing and visualization of position (see Table 6). The first

of these phenomena suggests that important components of the knowledge base

underlying expert pilot decision processes have not been captured. It is

reasonable to hypothesize that these components may relate to procedural

rather than declarative knowledge and be manifest in concepts of scripts

(Schank & Abelson, 1977) and mental models (Gentner & Stevens, 1983; Rouse &

Morris, 1986) that help to sustain the expert's situation awareness.

Decisions or diagnoses may be made by matching mental models, scripts or

previous experiences to the environmental circumstances (Stone et al., 1985),

rather than by integrating facts of declarative knowledge with sampled

environmental cues through computational mechanisms in working memory. Indeed

the richer the source of environmental cues, if these are correlated with a

pilot's experience, the more information will be available to make such a

pattern match unambiguous and the better a pilot's judgment should be. A
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procedure like this would explain the initially surprising positive relation

between the demand of a decision problem for simultaneous integrative

processes and positional awareness, and the quality of the expert pilot's

decision as shown in Table 6. This hypothesis is intriguing, and its test

will depend upon a different methodology for examining pilot expertise (e.g.,

Schvaneveldt et al., 1985). Such methodology will be pursued in our future

work as we try to unravel the mysteries of pilot judgment.

In conclusion, it should be noted that the current study is unique in its

efforts to apply theoretical modeling, cognitive theory, and the methods of

both experimental and differential psychology to the collection of expert

decision making data. While a large amount of work still needs to be done in

order to improve and perfect the approach, we feel confident that the current

data are leading toward the acquisition of important information in this

critical area of pilot judgment.
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APPENDIX A: Risk Assessment and Utilization Test

Name

Subject Number

Risk Assessment and Utilization Test

The following test is designed to measure how accurately you assess the

riskiness of a situation, and how you use this information in selecting your

preference between alternative courses of action.

Answer the following questions as quickly and accurately as possible. Do

not try to do any actual mathematical calculations. Rather, make your

responses based upon your general impression and situation assessment. Please

note that there are no "right" or "wrong" answers, and that your test score

will. be maintained in complete anonymity.

You will have 10 minutes in which to complete this test. When you finish

each part, move on to the next, until you have completed all 4 parts of the

test. Are there any questions?
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PART I

ESTIMATE the following answers after a brief glance at the test picture. Do

not try to do any actual counting or mathematical calculations.

40

1. • * g S

What percent of the dots are above the line?

Wh~at percent of the circle is shaded?

3. 4/250 is equivalent to x/75- x

S 69
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4.

What degree angle is this?

5.
Sm.m.mm

What percent of the figures in the box are squares?

6.

The second square is times larger than the first.
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7,

What degree angle is this?

8.J

What percent of the circle is shaded?
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PART II

Based upon the frequency of death per 100ooo U.S. residents (It may help to

think of 100p000 residents as the population of a town like Champaign-Urbana),

how many do you think will die in one year from each of the following causes?

Mark an "X" on the response scale to indicate your estimate.

1. motor vehicle accident L
.01 .1 1 10 100 1000

2. cancer (any type)
.01 .1 1 10 100 1000

3. drowning _ I I I - 1
.01 .1 1 10 100 1000

4. electrocution L
.01 .1 1 10 100 1000

5. accidental fall I 1 1 1 1 1 1
.01 .1 1 10 100 1000

6. firearm accident L 1 1 1 1 1 1 1
.01 .1 1 10 100 1000

7. vehicle-train collision 1 1 1 1 1
.01 .1 1 10 100 1000

8. homioide
.01 .1 1 10 100 1000

9. fire 1 1 1 1
.01 .1 1 10 100 1000

10. tornado I I_ L I 1 I_ 1
.01 .1 1 10 100 1000
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PART III

Respond with your beat estimate to the following questions pertaining to

aviation-related accidents. To aid you in these estimations, the following

statistics may serve as benohmarks: In arn average school year, the University

of Illinois pilot training fleet los approximately 10,500 hours. In one

year, the total number of flight hours logged by all major commercial airlines

is 7.4 million.

1. For all aircraft, how many accidents (both fatal and non-fatal) occur per

100,000 aircraft hours?

2. For all aircraft (general aviation pilots), how many fatal crashes occur

per 100,000 aircraft hours?

3. For the normal pilot population, what percentage of accidents may be

attributed to continuing flight into deteriorating weather without an IFR

flight plan?

4. What percentage of accidents are attributed to fuel exhaustion?

5. Out of all fuel exhaustion accidents, what percentage occurred within 0

to 1 mile of the pilot's destination?

6. During instructional flight, how many accidents (both fatal and non-

fatal) occur per 100,000 aircraft hours?
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7. For the normal pilot population, what percentage of accidents were

attributed to stalls?

8. During instructional flight, how many fatal accidents occur per 100,000

aircraft hours?

9. What percentage of all normal pilot population accidents were collisions

(taxiway, runway, or mid-air)?

10. How many total aircraft accidents occur per 100,000 hours for personal

and business flights (excluding corporate/executive, instructional and

aerial application flights)?
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PART IV

In each of the following cases, you will be given 2 alternative courses of

action. Mark an "X" on the response s3ale indicating the degree of preference

for 1 option over the other. The neutral point indicates no preference for

either option.

1. A) Buy a random card from a standard deck of 52 for $2.00. If the card

drawn is a heart, you win $10. If not, you lose your $2.00.

B) I will give you $1.00.

Which would you prefer?

I _ _ _ _ I _ _ _ _ I _ _ _ _ I I_ _

A No Preference B

2. A) Roll a die. If a 1, 2, or 3 is rolled, I will pay you $3.00. If a

4, 5, or 6 is rolled, you pay me $2.00.

B) Roll a die. If a 3 is rolled, I will pay you $3.00.

Which would you prefer?

I _ _ _ _ _ I _ _ _ _ I _ _ _ _ _ I _ __ I
No Preference B

3. A) I iiill pay you $1.50.

B) llip a coin. If it's a head, you win $5.00. If it's a tail, you

lose $2.00.

Which would you prefer?

_ __I _ _ _ _ I_ _ _ _ I _ _ _ _ I
A No Preference B
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4. A) You pay me $2.50.

B) Flip a coin. Heads you win $5.00. Tails you pay me $10.

Which would you prefer?

I I I I I
A No Preferenoe B

5. A) Buy a lottery ticket for $10 with a 1/100 chance of winning $1,000.

B) Keep your $10 and buy no ticket at all.

Which would you prefer?

I _ _ _ _ I _ _ _ _ I _ _ _ _ I _ _ _ I
A No Preference B

6. A) Draw a card from a standard deck of 52 cards. If a card is a spade,

you win $10. If it is a heart, you pay me $5.00. If it is a club,

S,;t :'- A $1.00. If Jt is a diamond, you gain or lose nothing.

B) I ,ill give you $1.00.

Which would you prefer?

I - - I I I I
A No Preference B

7. You make a $100 investment in the stock market. Unfortunately, shortly

after purchasing the stock, its value dropped substantially. Would you:

A) Sall the stock for a net loss of $40.

B) Wait for a 10% chance of gaining a $500 profit, but a 90% chance of

losing the total $100 investment.

Which would you prefer?

I I _-1I _1_ I
A No Preference B
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8. A) Pay me $20 for a 1/10 chance of winning $100.

B) Pay me $10 with no chance of winning.

Which would you prefer?

A No Preference B

9. A) Roll a die. If a 1, 2, or 3 is rolled, you win $10. If a 4, 5, or

6 is rolled, you pay me $10.

B) Flip a coin. If it's a head, you win $1.00. If it's a tail, you

pay me $1.00.

Which vrould yo'ai pref'er?

SA No Preference B

10. A) Do not gamble with a di.e at all.

B) Roll a die. 1" it's a 5 or 6, . i, 0 •10, Anything else, you lose

$5.00.

Which would you pref:.'?

_ _ __I _ . _ _ .I _ _ _ _ I_ _ _ _ I
A No Preference B
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APPENDIX B: Aviation Declarative Knowledge Test

AVIATION RESEARCH LABORATORY MIDIS PROJECT
April 1987

University of Illinois

This test has no official standing and is solely for the research
purposes of ARL. Individual scores on the test constitute research data, and
as such will be treated as confidential to the individual and the research
staff of the MIDIS project.
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1[] 7.5i. What responsibillty does the pilot in command of an IFR flight
assume upon entering VFR oondi't-ons?

(1) Advise ATC when entering VFR conditions.

(2) Report VFR conditions to ARTCC so that an amended clearance may be
issued.

(3) Use VFR operating pro.:edure•.

(4) To see and avoid other trafric.

(2) 7463. If you are departing from an airport where you cannot obtain an
altimeter setting, you should set your altimeter

(1) on 29.92" Hg.

:'• (2) on zero ft.

(3) on the current airport barometric pressure, if known.

(4) to the airport elevation.

[3] 7049. When departing from an airport located outside controlled airspace
during IFR conditions, you must file an IFR flight plan and receive a
clearance before

(1) takeoff.

'(2) entering IFR conditions.

*. (3) entering controlled airspace.

(4) arriving at the en route portion of the flight.

(4] 7024. Before beginning any flight under IFR, the pilot in command must
become familiar with all available information concerning that flight. In
addition, the pilot must

(1) list an alternate airport on the flight plan and become familiar with the
instrument approaches to that airport.

(2) list an alternate airport on the flight plan and confirm adequate takeoff
and landing performance at the destination airport.

(3) be familiar gith all instrument approaches at the destination airport.

(4) be familiar with the runway lengths at airports of intended use, and the
alternatives available if the flight cannot be complý.ted.
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[5) 7039. You check the flight instruments while taxiing and find that the
VSI (vertical speed indicator) indicates a descent of 100 ft./min. In this
case, you
(1) must return to the parking area and have the instrument corrected by an

authorized instrument repairman.

(2) may take off and use 100 ft. descent as the zero indication.

(3) may not take off until the instrument is corrected by either the pilot or
a mechanic.

(4) may take off without any correction because this instrument is used very
little during instrument flight.

[6) 7070. Which sources of aeronautical information, when used collectively,
provide the latest status of airport conditions (e.g., runway closures, runway
lighting, snow conditions)?

(1) Airman's Information Manual, Aeronautical Charts, and Distant (D) NOTAMS.

(2) Airport Facility Directory, FDC NOTAMS, and Local (L) NOTAMS.

(3) Airport Facility Directory, Distant (D) NOTAMS, and Local (L) NOTAMS.

(4) Standard Instrument Approach Procedures, FDC NOTAMS, and Airman's
Information Manual.

(7) 7077. What are the minimum weather conditions that must be forecast to
list an airport as an alternate when the airport has no approved instrument
approach procedure?

(C) The ceiling and visibility at ETA, 2,000 ft. and 3 miles, respectively.

(2) The ceiling and visibility from 2 hours before until 2 hours after ETA,
2,000 ft. and 3 miles, respectively.

(3) The ceiling and visibility from 2 hours before until 2 hours after ETA,
1,000 ft. above the highest obstacle, and 3 miles, respectively.

(4) The ceiling and visibility at ETA must allow descent from MEA, approach,
and landing, under basic VFR.
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(8) 7166. The absence of a visibility entry in a Terminal Forecast

specifically implies that the surface visibility

(1) exceeds basic VFR minimums.

(2) exceeds 10 miles.

(3) exceeds 6 miles.

(4) is at least 15 miles in all directions from the center of the runway
complex.

(9) 7192. What is the significance of the "F2" in the remarks portion of this
Surface Aviation Weather Report for CLE?

CLE SP 1350 - X E80 BKN 150 OVC 1GF
169/67/67/2105/003/R23LVV11/2 F2

(1) The restriction to visibility is caused by fog and the prevailing
visibility is 2 statute miles.

(2) The partial obscuration is caused by fog and the visibility value is
variable, 1-1/2 to 2 statute miles.

(3) 'Fog is obscuring 2/10 of the sky.

(4) The surface based obscuration is caused by fog and is 200 ft. thick.

(10) 7449. What does the symbol in the minimums section for a
particular airport indicate?

(1) Takeoff minimums are 800 ft. and 2 miles.

(2) Takeoff minimums are 1 mile for aircraft having two engines or less and
1/2 mile for those with more than two engines.

(3) Instrument takeoffs are not authorized.

(4) Takeoff minimums are not standard and/or departure procedures are
published.

[11] 7249. To which maximum service volume distance from the MFR VORTAC
should you expect to receive adequate signal coverage for navigation at the
flight planned altitude?

(1) 130 NM.

(2) 100 NM.

(3) 80 NM.

(4) 40 NM.
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[12) 7345. What is the significance of the following symbol at Grice
intersection? 5 .. s MAP .A-ITACKE

(1) It signifies a localizer only approach is available at Harry P. Williams
Memorial.

(2) The localizer has an ATC funotion in addition to course guidance.

(3) GRICE intersection also serves as the FAF for the ILS approach procedure
to Harry P. Williams Memorial.

(4) It signifies that the 2360 course is a back course approach procedure.

(13) 7373. When departing from an airport not served by a control tower, the
issuance of a clearance containing a void time indicates that

(1) ATC will assume the pilot has not departed if no transmission is received
before the void time.

(2) the pilot must advise ATC as soon as possible, but no later than 30
minutes, of their intentions if not off by the void time.

(3) ATC will protect the airspace only to the void time.

(4) the pilot must contact FSS and file a flight plan not later than the void
time specified in the clearance.

(14] 7376. Which distance is displayed by the DME indicator?

(1) Slant range distance in nautical miles.

(2) Slant range distance in statute miles.

(3) The distance from the aircraft to a point at the same altitude directly
above the VORTAC.

* (4) Line of sight direct distance from aircraft to VORTaC in statute miles.

(15] 7388. What service is provided by departure control to an IFR flight

when operating from an airport with a terminal radar service area (Stage III)?

(1) Separation from all aircraft operating in the THSA.

(2) Position and altitude of all traffic within 2 miles of the IFR pilot's
line of flight and altitude.

(3) Position of all participating VFR aircraft within the airport traffic
area.

(4) Separation from all IFR aircraft and participating VFR aircraft.
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[16] 7402. What does the ATC term "Radar Contact" signify?

(1) Your aircraft has been identified and you will receive separation from
all aircraft while in contact with this radar facility.

(2) Your aircraft has been identified on the radar display and radar flight
following will be provided until radar identification is terminated.

(3) You will be given traffic advisories until advised the service has been
terminated or that radar contact has been lost.

(4) ATC is receiving your transponder and will furnish vectors and traffic
advisories until you are advised that contact has been lost.

(17) 7408. What is the definition of MEA (Minimum En Route Altitude)?

(1) An altitude which meets obstacle clearance requirements, assures
acceptable navigation signals from more than one VORTAC, and assures
accurate DME mileage.

(2) The lowest published altitude which meets obstacle clearance
requirements, assures acceptable navigational signal coverage, and two-
way radio communications.

(3) The lowest published altitude which meets obstacle requirements, assures
acceptable navigational signal coverage, two-way radio communinations,
and provides adequate radar coverage.

(4) An altitude which meets obstacle clearance requirements, assures
acceptable navigation signal coverage, two-way radio communications,
adequate radar coverage, and accurate DME mileage.

(18) 7414. Reception of signals from an off-airway radio facility may be
inadequate to identify the fix at the designated MEA. In this case, which
altitude is designated for the fix?

(1) MRA.

(2) MAA.

(3) MCA.

(4) MOCA.
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r19] 7441. You enter a holding pattern at a fix, not the same as the approach
fix, and receive an EFC time of 1530. At 1520 you experience complete two-way
communications failure. Which procedure should you follow to execute the
approach to a landing?

(1) Depart the holding fix to arrive at the approach fix as close as possible

to the EFC time and complete the approach.

(2) Depart the holding fix at the EFC time, and complete the approach.

* (3) Depart the holding fix at the EFC time or earlier if your flight planned
ETA is before the EFC.

(4) Depart the holding fix to arrive about 2 minutes ahead of the EFC and

then enter a holding pattern at the final fix and adjust pattern to leave
the fix inbound at the EFC.

(20] 7041. When making an airborne VOR check, what is the maximum allowable
tolerance between the two indicators of a dual VOR system (units indepedent of
each other except the antenna)?

(1) 40 between the two indicated bearings to a VOR.

(2) Plus or minus 40 when set to identical radials of a VOR.

(3) 60 between the two indicated radials of a VOR.

(4) 40 when set to identical radials of a VOR.

(21] 7042. What is the oxygen requirement for an unpressurized airplane at

15,000 ft.?

(1) All occupants must use oxygen for the entire time at this altitude.

(2) Crew must start using oxygen at 12,000 ft. and passengers at 15,000 ft.

(3) Crew must use oxygen for the entire time above 14,000 ft. and passengers
must be provided supplemental oxygen only above 15,000 ft.

(4) Crew must start using oxygen at 12,500 ft. and passengers must be
provided supplemental oxygen at 14,000 ft.

(22) 7071. Where are the compulsory reporting point-n, if' any, on a direct

flight not flown on radials or courses of establishod airay•. 3r routes?

(1) Fixes selected to define the route.

(2) The points where the direct course crosses an airway.

(3) There are no compulsory reporting points unless advised by ATC.

(4) At the COP (changeover points).
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[23) 7104. Unsaturated air flowing upslope will cool at the rate of
approximately

(1) 30C per, 1,000 ft.

(2) 20C per 1,000 ft.

(3) 2.50C per 1,000 ft.

(4) 4.4oC per 1,000 ft.

* (24) 7125. Which is a characteristic of low-level wind shear as it relates to
frontal activity?

(1) The amount of wind shear in cold fronts is much greater than found in
warm fronts.

, (2) With a warm front, the most critical period is before the front passes
the airport.

(3) With a cold front, the most critical period is just before the front
passes the airport.

(4) With a cold front, the problem ceases to exist after the front passes the
airport.

[25) 7197. A Surface Analysis Chart depicts

(1) actual pressure systems, frontal locations, cloud tops, and precipitation
at the time shown on the chart.

(2) frontal locations and expected movement, pressure centers, cloud
coverage, and obstructions to vision at the time of chart transmission.

(3) actual frontal positions, pressure patterns, temperature, dew point,
wind, weather, and obstructions to vision at the valid time of the chart.

(4) actual pressure distribution, frontal systems, cloud heights and
coverage, temperature, dew point, and wind at the time shown on the
chart.
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